Brewer’s Saccharomyces yeast biomass: characteristics and potential applications

I.M.P.L.V.O. Ferreira a,*, O. Pinho a,b, E. Vieira a and J.G. Tavarela a

REQUIMTE — Serviço de Bromatologia, Faculdade de Farmácia da, Universidade do Porto, Rua Anibal Cunha 164, 4099-030 Porto, Portugal (e-mail: isabel.ferreira@ff.up.pt)

bFaculdade de Ciências da Nutrição e Alimentação da, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Saccharomyces yeast biomass is the second major by-product from brewing industry. It can be of value as a raw material with different uses, however, it is still underutilized, mostly, for swine and ruminant feed. This review aims to give a brief overview on applications for this agro-industrial by-product as a source of nutrients for human and fish nutrition, microbial growth, production and industrial use of brewer’s yeast components and highlight the needs for further investigations and research, especially in the areas of production of ingredients for functional foods and the use of brewer’s yeast as agents of detoxifying effluents containing heavy metals.

Origin of brewer’s Saccharomyces yeast biomass

The conventional brewing process has an extremely long history and can be regarded as a typical example of traditional biotechnology. Evidence for brewing of beer dates back to over 8000 years and since then, its pattern and consumption has changed considerably. The brewing industry has an ancient tradition and is still a dynamic sector open to new developments in technology and scientific progress. Nowadays, beer is one of the most popular alcoholic beverages, thus, brewing industry is a huge global business. Brewer’s are very concerned that the techniques they use are the best in terms of product quality and cost effectiveness.

Brewer’s produce beer at an advanced technological level while keeping in mind the importance of tradition. A great many of different types, or style, of beer are brewed across the world. During production, beer alternately goes through chemical and biochemical reactions (mashing, boiling, fermentation and maturation) and three solid–liquid separations (wort separation, wort clarification and rough beer clarification) (Wunderlich & Back, 2009).

Barley (Hordeum vulgare) is commonly used as a source of starch but it has to be malted to dissolve starch in the grains prior to brewing. Malting steps are steeping, germination, and kilning. Enzymes digest grain contents during these processes and prepare starch for further processes (Celus, Brijs, & Delcour, 2006; Silva et al., 2008). Further, enzymes convert the starch of milled malt to fermentable sugars during mashing. This procedure results in wort that is boiled. barley malt and adjuncts (substances different from barley malt which provide additional fermentable carbohydrates) are the sources of several constituents present in beer such as, nitrogenous compounds, lipids, carbohydrates and vitamins (Bamforth 2002; Ferreira, 2009; Ferreira & Martins, 2007; Nogueira, Silva, Ferreira, & Trugo, 2005; Silva, Ferreira, & Teixeira, 2006; Silva et al., 2008). Hops are added during boiling to provide bitterness and protect against bacterial spoilage, additionally, they are fundamental for good foam formation (Ferreira, Jorge, Nogueira, Silva, & Trugo, 2005).

Yeast converts sugars to alcohol during fermentation of cooled wort. Yeast has a fundamental impact on the quality of beer. It produces not only ethanol and carbon dioxide but even other compounds (higher alcohols, organic acids, esters, aldehydes, ketones, sulfur compounds) which play a key role on the sensorial profile of beer (Pinho, Ferreira, & Santos, 2006). After maturation and storage, beer is filtered and stabilized.

Saccharomyces sensu stricto includes Saccharomyces bayanus, Saccharomyces cariocanus, Saccharomyces cerevisiae, Saccharomyces kudriavzevii, Saccharomyces mikatae and Saccharomyces paradoxus (Kurtzman & Robnett, 2009).
The yeasts used in breweries are conventionally divided into two main classes, bottom-fermenting and top-fermenting. Beer is also divided into two very broad categories according to which yeast is used, respectively, lager and ale. Lager yeast, known as *Saccharomyces pastorianus* or *Saccharomyces carlsbergensis*, runs the fermentation at cool temperatures (8–15 °C), and forms a cloudy mass (floculates) on the bottom of the vessel (Bamforth, 2003). The beers so produced are called bottom fermented. Lager beers produced by bottom-fermenting yeasts are the most widespread beer types throughout the world (more than 90%). To produce ale beers, strains of *S. cerevisiae* are commonly used in the temperature range of 16–25 °C.

The manufacture of beer inevitably involves generation of various residues and by-products that are being produced in large amounts annually from main beer manufacturers due to increase volume of beer production. Increasing efforts are being directed towards the reuse of agro-industrial by-products, from both economic and environmental standpoints (Fillaudeau, Blanpain-Avet, & Daufin, 2006; Mussatto, 2009).

The yeast is used by the brewe\r

Yeast culture in brewing

Until the end of the nineteenth century, yeast was not identified as the fermentation agent of wort, and beer was traditionally obtained by the action of a mixture of microorganisms, mainly represented by yeasts and bacteria, that were perpetuated from one batch to the other. E. C. Hansen from Carlsberg Brewery (Denmark) established the basis for using selected yeasts strains as starter cultures in brewing in 1883. He was the first to define ale brewing yeasts and to distinguish them from lager brewing yeasts (Rainieri, 2009). Ale yeasts are classified as *S. cerevisiae*, they differ from lager yeasts for their phenotypic and genomic characteristics. Among the major distinctive traits of these yeasts is the ability to ferment well at 20–25 °C. Lager yeasts are currently classified as *S. pastorianus*, however, their name has changed several times over the years. Hansen initially classified them as *S. carlsbergensis*, in the 1970s were referred as *Saccharomyces uvarum*. Lager stains generally cannot grow above 37 °C and ferment well at 8–10 °C.

The inoculation of wort is called “pitching” and the pitching rates depend on fermentation temperature. The pitching rates most often used are between 15 and 25 million cells/ml (Wunderlich & Back, 2009). During fermentation, yeast cell mass increases three- to six fold. The amount of yeast grown depends on the fermentation conditions of each brewery. The type of yeast as well as the condition of the pitching yeast, such as yeast generation and glycogen content, can also affect yeast growth. Low fermentation beer is produced through two fermentation steps, the primary fermentation at 8–15 °C, followed by a long secondary fermentation between −1 °C and +4 °C (the “lagering phase”). After primary fermentation 90% of the fermentable matter is consumed and most of the yeast is collected as brewer’s *Saccharomyces* yeast biomass. After beer aging has been completed and the yeast, along with other insoluble material, has settled, the tank bottoms are also collected. Typically, the total amount of brewer’s *Saccharomyces* yeast biomass produced in lager fermentation is about 1.7 kg/m³–2.3 kg/m³ of final product (Hellborg & Piskur, 2009; Huige, 2006). Brewer’s *Saccharomyces* yeast biomass usually has 10–14% total solids, including yeast solids, beer solids, and trub solids. It may retain as...
much as 1.5—2.5% of the total beer production. When yeast is sold for food uses, removal of both trub solids and beer solids is generally necessary.

Aplications for brewer’s Saccharomyces yeast biomass

World-wide spent brewer’s yeast is generally sold primarily as inexpensive animal feed after inactivation by heat. Dried yeasts are an excellent source of protein for swine and ruminant, this application was reviewed recently by Huige (2006).

Commercial brewer’s yeast is inactive yeast (dead yeast cells with no leaving power) remaining after the brewing process. It is an inexpensive nitrogen source with good nutritional characteristics and a very bitter taste, generally recognized as safe (GRAS). Brewer’s yeast should not be confused with “brewer’s type yeasts” or “nutritional yeasts”, which are pure yeasts usually grown on enriched cane or beet molasses under controlled production conditions, cultivated specifically for use as a nutritional supplement and not a by-product of the brewing process (Bekatorou, Psarianos, & Koutinas, 2006).

Interest in microorganism proteins has increased as a result of continuously growing fermentation industries which produce microorganism biomass as a by-product. A limiting factor in utilization of yeast biomass as a protein source for human consumption is its high nucleic acid content, primarily ribonucleic acid (RNA), which may account for one third of the total cell protein. Some reagents and techniques are used for isolation of yeast protein with low RNA.

Yeast biomass is not only a source of proteins but also an excellent source of B-complex vitamins, nucleic acids, vitamins and minerals, including a biologically active form of chromium known as glucose tolerance factor. Schwarz and Mertz (1959) reported that extract of brewer’s yeast could reverse the impaired tolerance to glucose load in yeast fed rats. They termed the active substance in brewer’s yeast tolerance factor (GTF). Toepfer, Mertz, Polanski, Rogenski, and Wolf (1977) reported that the biologically active extract from brewer’s yeast contained chromium, nicotinic acid, glycine, cysteine and glutamic acid. They provided further evidence for their claim by synthesizing biologically active complexes comprised of trivalent chromium, nicotinic acid, glycine, cysteine and glutamic acid. Biologically active chromium is trivalent form, which potentially insulin activity, measured in vitro. Brewer’s yeast is a good source of chromium trivalent and has been studied extensively for its medicinal properties (Cefalu & Hu, 2004; Ding et al., 2000). Recent studies indicate that no significant effect of chromium on lipid or glucose metabolism was found in people without diabetes. Chromium supplementation significantly improved glycemia among patients with diabetes. However, future studies that address the limitations in the current evidence are needed before definitive claims can be made about the effect of chromium supplementation (Balk, Tatsioni, Lichtenstein, Lau, & Pittas, 2007).

Yeast biomass can be used in food industry to produce yeast protein concentrates (and isolates) while still retaining their functional properties and nutritive values. Brewer’s yeast products are usually found in the form of powders, flakes or tablets, or in liquid form. Liquid yeast contains enzymatically digested yeast for better digestion, absorption and utilization. These products can be sprinkled on food, used as a seasoning or mixed with milk, juices, soups, and gravies.

Autolysis by endogenous enzymes occurs naturally in yeasts when they complete the cell growth cycle and enter the death phase. In autolysis or self-digestion, the intracellular enzymes break down proteins, glycogen, nucleic acids, and other cell constituents. The autolytic process requires careful application and control of heat to kill cells without inactivating the yeast enzymes. This process is usually carried out under moderate agitation and temperatures between 30 and 60 °C for 12—24 h. It has some disadvantages such as low extraction yield, difficulty in solid—liquid separation due to high content of residue in autolysate, poor taste characteristics as a flavour enhancer, and risk of deterioration due to microbial contamination. Plasmolysis, using inorganic salts such as sodium chloride to accelerate autolysis (Belousova, Gordienko, & Eroshin, 1995) has limited use, since there is a growing demand for processed foods containing low salt. Hydrolysis is the most efficient method of solubilizing yeast, and is carried out by hydrochloric acid or proteolytic enzymes. Despite a high production yield, acid hydrolysis is less attractive to the manufacturers because of relatively high capital investment cost, high salt content and high probability of containing carcinogenic compounds such as monochloropropanol and dichloropropanol (Huige, 2006). Autolysates and hydrolysates have several applications as a source of nutrients and bioactive compounds in aquaculture (summarized in Table 1).

Fish nutrition

Proper nutrition has long been recognized as a critical factor in promoting normal growth and sustaining health of fish. Brewer’s yeast has been recognized to have potential as a substitute for live food in the production of certain fish (Nayar, Hegde, Rao, & Sudha, 1998) or as a potential replacement for fishmeal (Oliva-Teles & Gonçalves, 2001; Rumsey, Hughes, Smith, Kinsella, & Shetty, 1991; Rumsey, Kinsella, Shetty, & Hughes, 1991). Brewer’s yeast can replace 50% of fishmeal protein with no negative effects in fish performance. Moreover, the inclusion of up to 30% brewer’s yeast in the diet improved feed efficiency. As a protein feedstuff, brewer’s yeast has been included in commercial diet formulations for several fish species, including salmonids.

The cell wall has been suggested to cause the reduced nitrogen digestibility commonly found in single cell protein.
Partial replacement of fishmeal by brewers yeast, in and iso-nitrogenous and isoenergetic diets containing brewer’s dried yeast fed to rainbow trout wall increases the digestibility and beneficial effects of diet sources (Yamada & Sgarbieri, 2005). Disruption of the cell wall increases the digestibility and beneficial effects of diets containing brewer’s dried yeast fed to rainbow trout (Rumsey, Hughes et al., 1991; Rumsey, Kinsella et al., 1991).

Farmfish diets should not only provide the essential nutrients that are required for normal physiological functioning but may serve as the medium by which fish receive other components that may affect their health (Gatlin, 1997, 2002; Webster, 2002). Brewer’s yeast contains various immunostimulating compounds such as β-glucans, nucleic acids as well as mannan oligosaccharides (White, Newman, Cromwell, & Lindemann, 2002). It has been observed to be capable of enhancing immune responses (Ortuño, Cuesta, Rodríguez, Esteban, & Meseguer, 2002; Siwicki, Anderson, & Rumsey, 1994) as well as growth (Lara-Flores, Olvera-Novoa, Guzmán-Méndez, & López-Madrid, 2002) of various fish species and thus may serve as an excellent health promoter for fish culture. Brewer’s yeast positively influenced growth performance and feed efficiency of hybrid striped bass as well as resistance to *Streptococcus iniae* infection. Several experiments describe the influence of dietary additives on immune response, disease resistance and intestinal microbial community (Burr, Hume, Ricke, Nisbet, & Gatlin 2008; Li et al., 2009). In addition, results of immune response assays demonstrate that brewer’s yeast can be administered for relatively long periods without causing immunosuppression (Li & Gatlin, 2003, 2004, 2005).

Additionally, brewer’s yeast commercial formulations is suitable as a food source for the mass production of the nematode *Panagrellus redivivus* used for feeding farm fish and crustacean larvae (Ricci, Fifi, Ragni Schlechtriem, & Focken, 2003) during their early stages of development.

Microorganisms’ substrate

Owing to the high level of protein, vitamin B complex and minerals, brewer’s yeast cells, its autolysates and hydrolysates might be used as a nutrient source for the growth of fastidious microorganisms or related product formation. Consequently, there is an economic interest in using these yeast extracts in microbiological media and several studies were performed to evaluate growth-promoting properties of brewer’s yeast extracts as summarized in Table 2. The effect of brewers’ yeast extracts pure or mixed with baker’s extracts were evaluated on the growth of lactobacilli and pediococci (*Lactobacillus casei* EQ28 and EQ85, *Lactobacillus acidophilus* EQ57, *Pediococcus acidilactici* MA18/5-M) to provide information for industry that formulate microbiological growth media, as well as to producers of yeast extracts. Growth of *L. acidophilus* EQ57 was best in the presence of 100% (Champagne, Gaudreau, & Conway, 2003).

<table>
<thead>
<tr>
<th>Brewers yeast</th>
<th>Fish spice used</th>
<th>Effects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact, disrupted and extracts from brewer’s dried yeast</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Disruption of the cell wall increases the digestibility and beneficial effects</td>
<td>Rumsey, Hughes et al. (1991), Rumsey, Kinsella et al. (1991)</td>
</tr>
<tr>
<td>Partial replacement of fishmeal by brewers yeast, in and iso-nitrogenous and isoenergetic diets</td>
<td>Sea bass (Dicentrarchus labrax)</td>
<td>Brewers yeast can replace 50% of fishmeal protein with no negative effects 30% brewers yeast improved feed efficiency No beneficial effects were observed for supplementation of brewers yeast diets with methionine</td>
<td>Oliva-Telles and Gonçalves (2001)</td>
</tr>
<tr>
<td>Lyophilised whole yeast</td>
<td>Gilthead seabream (Sparus aurata L.)</td>
<td>Yeast supplementation improved the seabream cellular innate immune response</td>
<td>Ortúñ et al. (2002)</td>
</tr>
<tr>
<td>Yeast Saccharomyces cerevisiae (0.1%)</td>
<td>Nile tilapia (Oreochromis niloticus)</td>
<td>Improved growth and feed efficiency appropriate growth stimulating additive</td>
<td>Lara-Flores et al. (2002)</td>
</tr>
<tr>
<td>Dried brewers yeast (Brewtech®) Incremental levels 1%, 2%, 4%</td>
<td>Hybrid striped bass (Morone chrysops × M. saxatilis)</td>
<td>Positively influenced growth performance and feed efficiency Resistance to Streptococcus iniae infection</td>
<td>Li and Gatlin (2003, 2004)</td>
</tr>
<tr>
<td>Yeast-based probiotic mixture GroBiotic®</td>
<td>Hybrid striped bass (Morone chrysops × M. saxatilis)</td>
<td>Immunostimulation and enhanced resistance to S. iniae and Mycobacterium marinum</td>
<td>Li and Gatlin (2005)</td>
</tr>
<tr>
<td>GroBiotic-A, brewer’s yeast and fructooligosaccharide</td>
<td>Red drum (Sciaenops ocellatus)</td>
<td>Positive effect on immune response, disease resistance and intestinal microbial community</td>
<td>Burr et al. (2008)</td>
</tr>
<tr>
<td>Brewer’s yeast and GroBiotic®-A (each component was supplemented at 2% or 5%) Brewers yeast commercial formulations to feed living Panagrellus redivivus</td>
<td>Pacific white shrimp (Litopenaeus vannamei)</td>
<td>Dietary supplementation of GroBiotic®-A improved survival of shrimp cultivated at low-salinity (2 ppt). Low-cost technology for mass production of the free-living nematode P. redivivus as an alternative live food for first feeding fish and crustacean larvae</td>
<td>Li et al. (2009), Ricci et al. (2003)</td>
</tr>
</tbody>
</table>
The importance of functional foods in the world is increasing, and the procedures for their production are under intense development. A functional food additive based on beetroot juice (Beta vulgaris L.) using brewer’s yeast autolysate and fermented by Lactobacillus plantarum A112, L. acidophilus BGSJ15-3 and L. acidophilus NCD01748 is described (Rakin, Baras, & Vukasinovic, 2004). Beetroot was chosen as a starting substance for the production of biotechnological highly valuable food, as there are numerous publications describing its favourable nutritive and protective benefits on humans. Fermentation using lactic acid bacteria is a widespread tradition. Brewer’s yeast autolysate contributes to the increase of the number of viable cells of lactic acid bacteria during the fermentation. L. plantarum A112 and L. acidophilus BGSJ15-3 can be successfully used for fermentation of the mixture of beetroot juice and brewer’s yeast autolysate.

The decomposition of proteinaceous material from brewer’s yeast waste to obtain more useful products is an other possibility of using this by-product. Recently, the hydrothermal decomposition into protein and amino acids of baker’s yeast cells was used as a model for spent brewer’s yeast waste. The reaction was carried out in a closed batch reactor at various temperatures between 100 and 250 °C. The hydrolysis product obtained at 200 °C was tested as a nutrient source for yeast growth. These results demonstrated the feasibility of using subcritical water to potentially decompose proteinaceous waste such as spent brewer’s yeast while recovering more useful products (Lamoolphak, et al. 2006).

Table 2. Application of autolysates and hydrolysates from brewer’s yeast as a source of nutrients in microbiological media.

<table>
<thead>
<tr>
<th>Brewers yeast extracts pure or mixed with bakers yeast</th>
<th>Microorganisms</th>
<th>Effects</th>
<th>Application</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude yeast autolysate supplemented with minerals and vitamins</td>
<td>Recombinant bacterium Escherichia coli KO11</td>
<td>Increase the ethanol formation</td>
<td>Ethanol production</td>
<td>York and Ingram (1996)</td>
</tr>
<tr>
<td>Brewers yeast hydrolysate or autolysate</td>
<td>Actinobacillus succinogenes NJ113</td>
<td>Enzymatic hydrolysis was a more effective method due to the higher succinic acid yield and cell growth</td>
<td>Production of succinic acid for preparation of biodegradable polymers</td>
<td>Jiang et al. (2009)</td>
</tr>
<tr>
<td>Hydrothermal decomposition of proteins from brewers yeast</td>
<td>Saccharomyces cerevisiae</td>
<td>The growth of yeast cells in the culture medium containing 2 w/v% of this products was comparable to that of the cells grown in the medium containing commercial yeast extract at the same concentration</td>
<td>Hydrothermal decomposition of yeast cells for production of proteins and amino acids</td>
<td>Lamoolphak et al. (2006)</td>
</tr>
</tbody>
</table>

Food ingredients

Other possibilities of application are the production and industrial use of yeast components, such as nucleic acids, nucleotides, cell wall polysaccharides and others. The utilization of the brewer’s yeast cells from beer industry for the production of food-grade yeast extract is promising, for...
example, to obtain flavouring foodstuff. Flavouring enhancers, monosodium glutamic acid (MSG) and nucleotides such as 5′-guanosine monophosphate (5′-GMP) and 5′-inosine monophosphate (5′-IMP) are well known in the food processing. Yeast extract from dried brewer’s yeast cells can be used by enzymatic treatment in a wide variety of foods as flavors, flavour enhancers, or flavour potentiators. Uses include meat products, sauces and gravies, soups, chips and crackers (Chae, Joo, & In, 2001; Halasz & Lasztity, 1991; Huige, 2006).

β-Glucan obtained from brewer’s yeast can be used in food products as a thickening, water-holding, or oil-binding agent and emulsifying stabilizer (Thammakiti, Suphantharat, Phaesuwan, & Verduny, 2004). Brewer’s yeast was autolysed and the cell walls were homogenized, extracted firstly with alkali, then with acid, and then spray dried. Effects of the homogenization on the chemical composition, rheological properties and functional properties of β-glucan were investigated. Homogenized cell walls exhibited higher β-glucan content and apparent viscosity than those which had not been homogenized because of fragmentation of the cell walls.

Use of prebiotics, nondigestible dietary ingredients that beneficially affect the host by selectively stimulating the growth of and/or activating the metabolism of health-promoting bacteria in the intestinal tract, is a novel concept in aquaculture. This phenomenon is worth exploring not only in human but also in fish nutrition. With the increasing concerns about use of antibiotics in aquaculture, various pre- and probiotics should receive further consideration. How to utilize dietary strategies and prebiotics to maximize the efficiency of probiotics is a promising subject and more research is warranted.

Future trends

The Saccharomyces yeast cells contain, numerous enzymes, namely, vacuolar proteases including serine, aspartyl, and metallo proteases, pectinases among others, thus, the industrial production of these enzymes from brewer’s yeast is a field to explore. However, until now studies were performed only with S. cerevisiae ATCC 52712. The suitability of crude yeast pectinase for fruit juice extraction was reported for to aid pineapple juice extraction (Dzogbefia, Ameko, Oldham, & Ellis, 2001).

Rapid extraction of pawpaw juice with the application of locally produced pectic enzymes from S. cerevisiae ATCC 52712 and combined effects of enzyme dosage and reaction time on papaya juice extraction are also reported (Djokoto, Dzogbefia, & Oldham, 2006; Dzogbefia & Djokoto, 2006). The suitability of this enzyme for starch production at a local factory in Ghana was evaluated (Dzogbefia, Ofosu, & Oldham, 2008). The potential for biotechnological application of this crude enzyme preparation to pineapple and papaya juice extraction and others appears quite promising. However, for the application of the technology on an industrial scale, parameters for the scale-up production of the enzyme will have to be carefully studied.

On the other hand, yeast cells represent an inexpensive, readily available source of biomass that has a significant potential for dye bioaccumulation. Modification of yeast cells with the perchloric acid stabilized ferrofluid lead to the formation of magnetically responsible material, which could be used as an efficient adsorbent for the removal of various water-soluble dyes (Safariková, Ptáčková, Kibrková, & Safarík, 2005).

The use of inexpensive biosorbents to sequester heavy metals from aqueous solutions, is one of the most promising technologies being developed to remove these toxic contaminants from wastewaters. Considering this challenge, the viability of Cr(III) and Pb(II) removal from aqueous solutions using a flocculating yeast residual biomass from a brewing industry was studied (Ferraz, Tavares, & Teixeira, 2004). Yeast biomass showed higher selectivity and uptake capacity to lead. Still, these results were far from ideal, being necessary to make more detailed studies to reach maximum recovery.

The use of nonliving biomass of yeast Saccharomyces as a suitable biosorbent of metal ions (lead, zinc, copper, and nickel) is also reported. Heat-killed cells showed a higher degree of heavy metal removal than live cells, being more suitable for bioremediation works. Dead flocculent cells can be used in a low-cost technology for detoxifying metal-bearing effluents as this approach combines an efficient metal removal with the ease of cell separation (Machado, Janssens, Soares, & Soares, 2009; Machado, Santos, Gouveia, Soares, & Soares, 2008; Parvathi, Nagen dran, & Nareshkumar, 2007; Zouboulis, Matis, & Lazaridis, 2001). The application of S. cerevisiae as a biosorbent not only removes metals from wastewaters but also eases the burden of disposal costs associated with the waste. However, literature on the application of biosorption to “real” industrial effluents is still scarce.

References

